
ON LOW-FREQUENCY OSCILLATIONS OF A PLATE 
ON ELASTIC HALF-SPACE 

(0 NIZKOCBASTOTNYKA KOLEBANIIAKB PLASTINY NA 

UPBUQOM POLUPBOSTBANSTVE) 

PMM Vo1.27, No.5, 1963, pp.947-951 

P.V. KRAUKLIS and L.A. MOLOTKOV 

(Leningrad) 

(Received April 10, 1963) 

Through the use of exact solutions of problems in the dynamic theory of 
elasticity for stratified systems, the special properties of wave pro- 
pagation in the low-frequency range have been clarified. The study of 
the displacement field in a homogeneous thin elastic layer has opened 
up the possibility of justifying and redefining more exactly the well- 
known classical equations of oscillations of thin plates [d. Likewise, 
as a result of this approach the equations of oscillations of multiple- 
layered plates were written down [21 and elastic-fluid systems consist- 
ing of half-spaces divided by a thin layer were investigated [3,41. This 
method is applied below to the study of low-frequency oscillations of 
an elastic layer which is in a nonrigid contact with the underlying 
elastic half-space. Let us note that by low-frequency oscillations we 
mean those whose frequency f satisfies the condition f << v,/2h (us is 

the velocity of the transverse waves and h is the thickness of the 
1 ayer) . This condition is equivalent to the requirement of a small 
thickness of the layer as compared to the wave length of oscillations. 

1. An elastic layer (0) (0 < z < h) situated on the elastic half- 
space (1) (z > h) is given in a cylindrical coordinate system. We de- 
signate by a,, -1 , a1 -1, b -1 and b -1 

transverse waves in the iedia (0)‘and 
the velocities of longitudinal and 

(1) respectively; by u,,, ~1~. p. 

and p1 the moduli of shear and density; and by qu, ylu, 91 and vyl the 
longitudinal and transverse potentials of the displacement fields which 
satisfy the wave equations 
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We will assume that on the boundary z = h nonrigid contact takes 
place: the normal components of displacement tit and stress t,, are oon- 
tinuous, the shear stress trZ = 0. These conditions lead to eouations 

relating potentials qo, ye, ‘pl, yl for z = h. 

For t < 0 there is no disturbance in the medium, but at t = 0 at point 
2 =o , r = 0 a source in the form of a normal force begins to act 

M a&co 

Lo = 0, t zz o= 
s 

k2Jo (kr) dk 
2Ri s 

A (k, 11) exp 2 dy ( 1 (1.3) 
0 o-ion 

The function A(k, ?j) is determined by the functional dependence of 
the source upon time. In all further investigations the form of the func- 
tion A(k, q) proves to be immaterial. 

Thus the determination of the displacement potentials ‘pe, q. Iyu and 
y1 is reduced to the solution of equations (1.1) with zero initial and 
boundary conditions (1.2) and (1.3). 

2. We look for the solution of the problem in the form 

t3tiCO 

[Yo+ekzPo + Yo-e-k’p~] exp 

0 

m Jo (kr) dk ‘+‘* 
‘PI = 5 

2ni i X1exP{k[~- (2 ---h)%]}drl 
0 d-kc 

(2.1) 
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The following designations were used in formulas (2.1): 

PO = Vi + V, B1= Vi + 612q2, o, = Vi + ro2V 
-- 

a, = VI + r12q2, 6,= blbg-l, y. = aObO-ll r1 = a,boml 

In order to have single-valued roots PO, PI, a0 and a1 the branch 
cuts were drawn from the branch points f i, f i6,-I f iy,,-’ and f iyI-1 
into the left half-plane and the main branches were fixed by the condi- 
tions arg ai = arg pi = 0 for q > 0. Let us note that the solutions in 
form (2.1) satisfy equations (1.1) and zero initial conditions. gub- 
stituting (2.1) into boundary conditions (1.2) to (1.3) and solving the 
system of algebraic equations, we obtain the expressions for the func- 

tions X,*, Y,*, Xl and Y,. 

In the analysis of the solutions let us pay Particular attention to 

the components qv and w,, of the displacement vector uv= qVrl + w,,kl in 
the vth medium. These components are related to the Potentials gj, and 
v,, by the expressions 

Based on solutions (2.1) and expressions (2.2) for the displacements 
q,, and we on the daylight surface and displacements q1 and wl in the 
half-space, we have 

1 cokJ1 (kr) dk ‘+CJ 
qo = z c 2ni \ 

0 0-b 

Q. (k, rl) A (k, 17) exp (F)h 

W. (k, rl) A (k, rl) exp 

(2.3) 

1 ?c.J~ (kr) dk ‘+” 
Ql = jy 

s c 2rCi l , 
[ Ql(l) ek(h-z)a, + Q2(l) ekWP,] exp 

(ErlA (k, 11) 

0 0402 

1 O" k.To (kr) dk 
a+iCO 

WI = - 
PO s 2ni 

[w,(l) &h-r)% + w2(l) eWh-Mq exp dq A (k, rl) 

0 

The designations used in equalities (2.3) were 

(2.4) 

Q,, = - AlAo-‘, W. = AzAo-‘, Ql(l) = - AxA,-‘, Q2(l) zz - AbAo-’ 

J+‘,(I) zzz - A6Ao-1, W,(l) z - AeAo-’ 
A0 = - ,R,ao [go2 sinhkhfio~shkhao - 4a,~odhkhaO~shkh~,] + 

+ oo,6?a, [8a&go2 @oshkha,coShlkI$, - 1) - (go4 + 16a~~02)sinhkhao~tikh~o] 
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3. In the investigation of the displacement field in the half-space 
we follow t31 and deform the integration contour Re rl = ff into the 
stationary contours of the phase functions 

f1 (rl) = 9 1 b0 - b - f4 al, f3 (rl) = 4 1 hi - (2 - hf #-& (3.1) 

In the case of displacements on the surface t = 0 we displace the 
contour Re ty = (T so as to include the branch cuts drawn from the branch 
points f i,y,“’ and f i&,-l. 

With the above deformation the singular points of the integrands in 
the plane rl may be intersected. In order to take singularities into con- 
sideration we have to investigate the integrands, Considering the ex- 
plicit expressions of those functions we find that the integrands have 
an essential singularity q = a; branch points are f iy1” and f 81”; 
singularities related to poles of A(k, q) and poles coinciding with the 
roots of equation 

A, (kh, q) = 0 (3.2) 

In the investigation of the field represented by formulas (2.4) the 
behavior of the roots in relation to the parameter kh plays a decisive 
role. It is easy to see that for kh = 0 equation (3.2) has a finite 
number of roots located at a finite distance from the origin and an in- 
finite number of roots at infinity in the left half-plane of the vari- 
able y. RY analogy to c31 let us call the first group of roots the 
roots of the first class and the rest the roots of the second class. If 
we bear in mind that in the expansion into Fourier integral by the wave 
members, the frequency is determined by the expression o = k Im qb,“, 

then it will turn out that the roots of the first class will correspond 
to oscillations whose spectrum begins with zero frequency. The roots of 
the second class correspond to oscillations which begin with the bound- 
ary frequencies 

CD, = Fy (k Im v@,-~) =: n.~ (bah)-1 (n = 1, 2, 3 . . .) 
-+ 

Thus, for the investigation of the low-frequency oscillations it is 
sufficient to locate the roots of equation (3.2) for 
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These conditions are simultaneously fulfilled only for the roots of 
the first class. 

A simple analysis of equation (3.2) shows that in the region (3.3) 
the integrands have two Pairs of Roles 

and the poles related to the source function A(k, q). (In (3.5) the 
values of al and RI should be takne at the point IJ = i2J (1 - y02).) 
Since the present paper considers a low-frequency field due to an arbi- 
trary source, the residues at the poles of the function A(k, q) will 
not be especially investigated. The low-frequency field is thus reduced 
to the sum of integrals, with respect to k, of the residues at the Poles 
(3.4) to (3.5) and of integrals along the stationary contours and branch 
cuts. The expressions containing integrals along the stationary contours 
describe maximum displacements on the surfaces 

$2 I(2 - h)2 + r2] = t2, b12 {(z - hf2 - ra] = t2 (3.6) 

and therefore may be looked upon as low-frequency diffracted waves. The 
trace of those waves on the daylight surface is described by the inte- 
grals along the branch cuts. The residues at points qI determine a 
Rayleigh wave which is propagated in the leyer and in the half-space 
along t = h. The properties of this wave are similar to those of 8 wave 
having the same name in a system consisting of the elastic half-space 
and a fluid layer h-d. 

As is well known, in a free Plate under a symmetrical influence 8 
longitudinal wave is propsgated with the velocity Y = 24 (1 - yib,-‘1 

(it is usually referred to 8s the longitudinal lamellsr wave). It 

follows directly from (3.5) that the wave described by the residues at 
?-lz has the same propagation velocity. However, for the model of the 
medium considered here the character of dispersion of the wave, as well 
as its damping, are different. Under the condition b, < 2b,‘l (1 - yo2) 

this wave undergoes additional exponential damping as it is propagated. 
The magnitude of this dantping depends on Re qz which is expressed as 

Re q2 = - x1 (kk)S = - 
4oLuV ( 1 - To+ (1 - 2~~~)~ 1 a, 1 lcshs 

s2+ 4 l%llB11 I 
q=inV/l- 
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4. Below we will distinguish three cases of relations of parameters 

a,-1 > be-1 > a,-1 > bl-1 (4.1) 
a,-’ > ao-’ > bl-l > b,-1 (4.2) 
a,-1 > bl-’ > a,-’ > b,-1 (4.3) 

Substituting (3.5) and (3.7) into (2.3) and changing the variables 
o= 2kJ (1 - yo2bo-I) we can obtain the spectra1 representation of the 
field for each of the cases (4. I) to (4.3) in the foflowing general 
final form: 

+ Clc2) (co) exp [ io (t - 2’;s V-j]} (t)” exp i_ Xv (*)“I do 

wi = RerJ,( $&-- 
)[ 

&(I) (0)exp io t-- 
t C 

bo 12 - 4 
___ 

2 lf2--To2 
64y12 (I - To”) - i)] + 

0 

-+ DL2) (0) exp io t- 
c i 

bo(z--h) 
- 

2 1/1-n? 
f4w(1 - ro7- I)]} (+)‘exp[- Xv(ijJdw 

(4.5) 

where 

xv = *v ( r& ) 
3 OA 

2 v-1 - rc? (4.6) 

and K,, = K1 if (4.1) is fulfilled, s= K* in the case of (4.2) and, 
finally. Kv = 0, if (4.3) takes place. The explicit form of the func- 
tions C, A and 3, D, Introduced into (4.4) to (4.5). can be easily de- 
termined from (2.3) and (2.4), and hfi is equal to the relation of the 
plate thickness to the wave length in the plate h = (aof)-l. In accord- 
ance with (3.3) the frequency WI, which is the upper limit of integra- 
tion, satisfies the condition 
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(4.7) 

In the discussion of the physical results which follow from the solu- 
tion of the problem at hand, attention is called to the fact that the 
bending oscillations, which exist in the case of a free layer, are 
absent here, The lamellar longitudinal wave has the same dispersion as 
in the free layer. However, the damping of the wave with the distance 
by the cylindrical law takes place only if the IneQuality (4.3) is ful- 
filled. In that case there is no loss of energy into the underlying half- 
space, in which the displaceaent field is a nonhomogeneous wave (di- 
minishes exponentially with the increase of z). If conditions (4.1) and 
(4.2) are fulfilled, the lamellar wave in the layer undergoes additional 
damping due to the radiation of energy into the half-space. The ampli- 
tude q. of the component of displacement vector diminishes monotonously 
as h/h increases, and the amplitude w. of the component has a maximum 
whose location is determined by the equality 

from which it follows that, as t increases, the maximum is displaced 
towards the smaller values of h/h; in that case homogeneous conical waves 
will be excited in the half-space. In the case (4.1) both the longi- 
tudinal and the transverse waves will be homogeneous, in the case (4.2) 
the transverse wave will be homogeneous, and the longitudinal will be 
nonhomogeneous. The equation of surfaces of euual phase is easily ob- 
tained by using the asymptotic expansion of Bessel functions for large r 

t- bar bo (2 - h, 
2JO=-55-- 

V/4@ (1 - rdf - 1 = con& 
2 Vi - raa 

(4.9) 
l- bar b, (2 - h, 

2v’C-Q - 2 1/l - To2 
1/4Sz (1 - TO”) - 1 = const 

The location of the maximum of spectral function of these oscilla- 
tions is determined by the condition 

h 3 /--ii-- 

which characterizes the displacement of the maximum towards smaller 
values of h/h as r increases. It is interesting that as the wave pro- 
pagates the amount of damping is higher for higher values of h than for 
smaller ones. In conclusion. it should be noted that if the boundary be- 
tween the layer and the half-space is fixed, the low-frequency waves of 
the type considered here do not arise [31. 
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